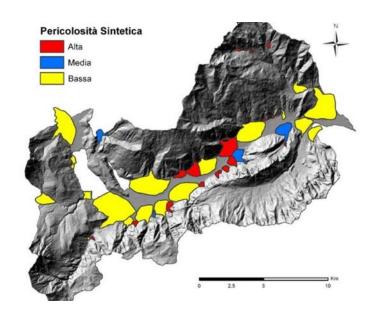


CARATTERISTICHE DI UNA COLATA DETRITICA

COLATE DETRITICHE


Tema di grande attualità che interessa tutto il territorio nazionale

(eventi che accadono ogni anno su gran parte del territorio nazionale)

POSSIBILITÀ DI PREVEDERE L'EVENTO?

Sono eventi difficili da prevedere

Mappe di Pericolisità

Monitoraggio (attraverso i più aggiornati sistemi in uso)

POSSIBILITÀ DI PREVEDERE L'EVENTO?

Sono eventi legati fortemente alle variazioni climatiche

Eventi che scaricano grandi quantità d'acqua in poche ore

Colate Detritiche di grande entità

ELEMENTI CHE FORMANO LE DEBRIS FLOW

ELEVATO POTENZIALE DISTRUTTIVO

Cuneo - Alluvione del 2016

ELEVATO POTENZIALE DISTRUTTIVO

Posso provocare ingenti danni alla comunità non solo distruggendo strade case e altre strutture, ma mettendo a repentaglio anche la vita delle persone

Cuneo - Alluvione del 2016

Langhe - Alluvione del 1994

COME SI COMPONGONO

Caratteristiche generali di una colata detritica

- Flusso per gravità di una miscela satura di acqua
- Composizione di roccia, terra, materia organica e detriti vari
- Componenti solidi dal 30% al 70%
- Inclinazione dal 25% al 30%
- Densità da 1600 a 2300 [kg / m3]
- Velocità fino a 15 [m / s]
- Volumi> 500 [m3]
- Flusso canalizzato

COME SI COMPONGONO

Mudflow (video 10 x)

Bassa densità: 1600 ÷ 1900 [kg/m³]

Alta velocità: 3 ÷ 10 [m/s]

Granular flow (video velocità relae)

Alta Densità: 1900 ÷ 2300 [kg/m³]

Bassa Velocità: 3 ÷ 7 [m/s]

COME FERMARE QUESTI EVENTI

COME FERMARE QUESTI EVENTI

Che tipo di strutture sono idonee a bloccare le colate detritiche?

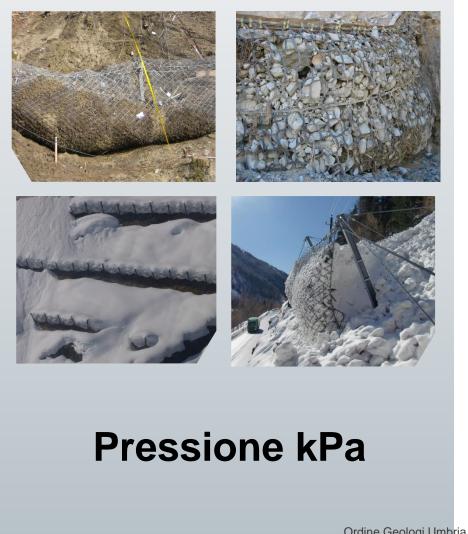
PERCHÈ UNA PRESSIONE E NON UN' ENERGIA?

PERCHÈ UNA PRESSIONE E NON UN' ENERGIA?

Barriere paramassi Energia di impatto kiloJoule

Barriere contro frane superficiali e debris flow

Pressione di impatto


kiloPascal

PERCHÈ UNA PRESSIONE E NON UN' ENERGIA?

Carico "puntuale"

Carico distribuito

PERCHÈ UNA PRESSIONE E NON UN' ENERGIA?

CARICHI PUNTUALI:

- ► Interasse montanti maggiore
- ► Performance più "elastiche"
- ► Forze su ancoraggi minori
- Maggiori deformate
- ► Azioni sui montanti più basse

CARICHI DISTRIBUITI:

- ► Interasse montanti minore
- ► Performance più "rigide"
- ► Forze su ancoraggi maggiori
- Minori deformate
- Azioni sui montanti più alte

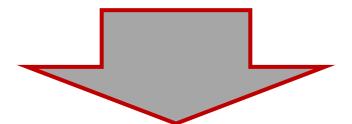
EAD 340020-00-0106

Norma di prodotto - EAD

Linee guida Europee (EAD) per la valutazione di barriere contro le colate detritiche e contro le frane superficiali.

EAD 340020-00-0106

Basic Works Requirement 1: Mechanical resistance and stability				
1	Maximum impact pressure	2.2.1	p₅ (kN/m²)	
2	Filled height of the net after single filling steps and after the complete filling	2.2.2	Z _i (m)	
3	Forces on cables/anchors	2.2.3	F (kN)	
4	Maximum elongation of net	2.2.4	δ (m)	
5	Residual height of the kit	2.2.5	he (m)	


Pressione di impatto

EAD 340020-00-0106

Introduzione dell'EAD di grande importanza

Ma non ancora pienamente recipata

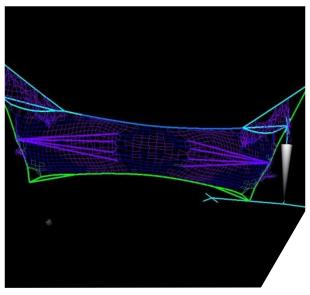
Ancora oggi nei prezziari pubblici e nei capitolati di opere pubbliche

Si trovano descrizioni di opere le cui prestazioni sono valutate in energie da dissipare (kJ) e non in pressioni da contenere (kPa)

RICERCA E SVILUPPO

L'introduzione della normativa sulle barriere contro le colate detritiche

Ha comportato anche


TEST A SCALA REALE

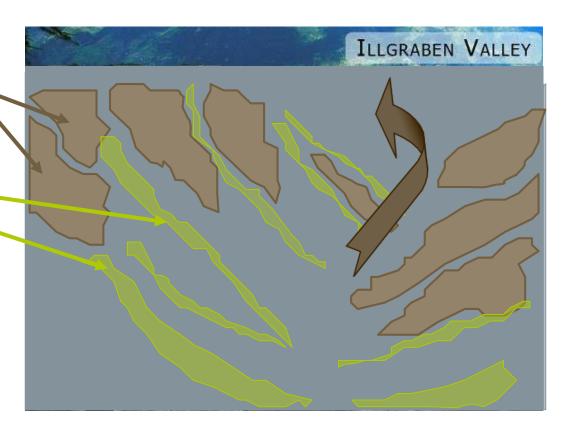
RICERCA E SVILUPPO

Test di laboratorio

Modelli numerici 1:1 test sul campo



Ottimizzazione della struttura della barriera flessibile


RICERCA E SVILUPPO

Posizionamento di sensori sulla barriera e intorno ad essa

ILLGRABEN VALLEY

- Versanti ripidi con presenza di materiale poco coeso
- canali
- Area del bacino idrografico elevata una direzione di flusso

ILLGRABEN VALLEY

Area molto attiva e costante negli ultimi 100 anni



5 – 6 eventi di colate Ogni anno!

OVERTOPPING

OPERE CONTRO LE COLLATE DETRITICHE

COME FERMARE QUESTI EVENTI

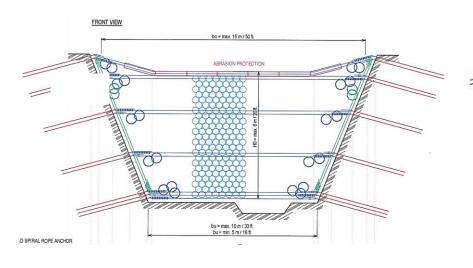
- > Trattengono il detrito
- Stabilizzano il profilo del torrente
- Intervento avulso dal contesto naturale
- > Forte impatto ambientale

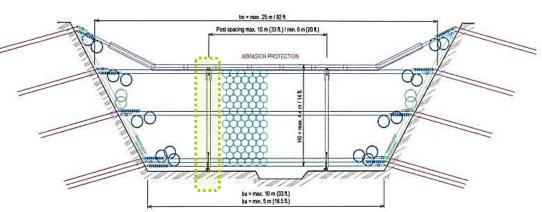
Briglie in cemento armato o metalliche

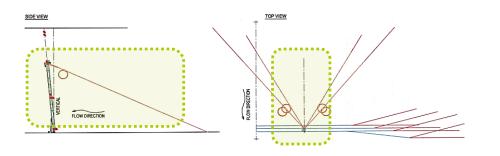
COME FERMARE QUESTI EVENTI

Principali Problemi

- Difficile svuotamento (da monte)
- > Erosione al piede e al coronamento
- > Scalzamenti al piede e sugli argini
- Degrado generale


Briglie in cemento armato o metalliche




BARRIERE IN ACCIAIO

Caratteristiche generali

Larghezza sommitale max: 15 [m]	Larghezza sommitale max: 25 [m]
Sagoma a V per torrenti stretti	Sagoma a U, per torrenti più ampi



BARRIERE IN ACCIAIO

Due diverse tipologie di barriere per adattarsi a diverse morfologie dell'alveo

Italy

CONCETTI BASE

Quando le colate detritiche incontrano la barriera

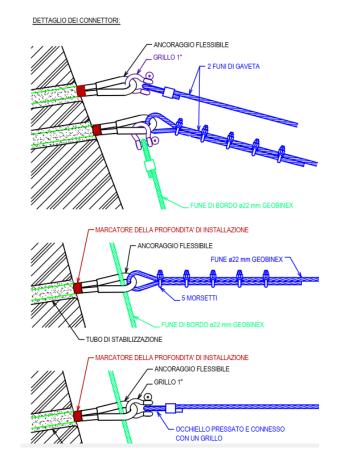
Carichi	Fattori principali
Blocco	Impatto + Aumento della pressione deritica
Riempimento	Pressione detritica + drenaggio sotto pressione idrostatica
Overflowing	Pressione detritica+ tracimazione



ANELLI IN ACCIAIO AD ALTA RESISTENZA

Un perfetto mix di resistenza e flessibilità

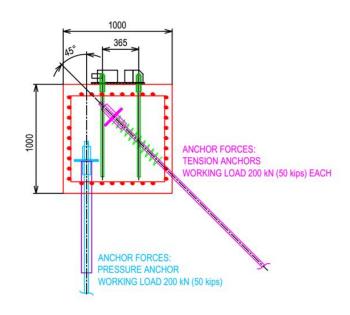
La tipologia di anello viene scelta in base alle caratteristiche dell'intervento.

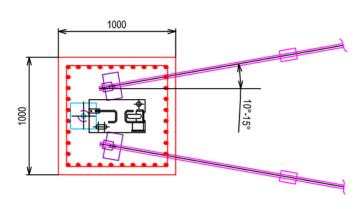


Realizzati per sopportare alte pressioni dinamiche e statiche

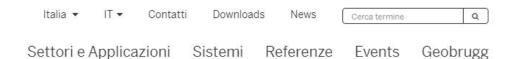
ANCORAGGI

Ancoraggi a testa flessibile per agganciare le funi di supporto


FONDAZIONI MONTANTI

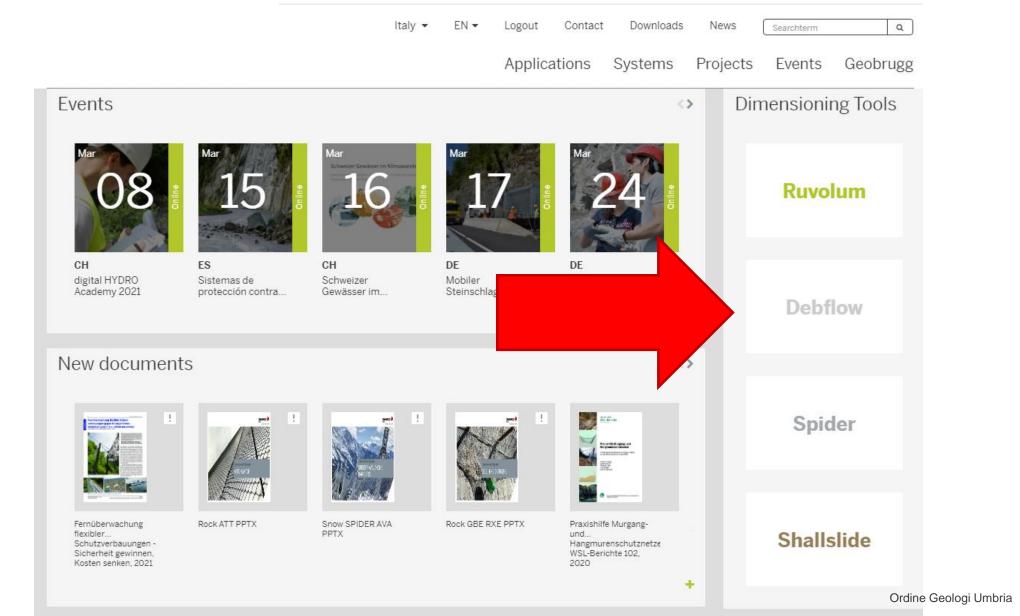


Barre piene, cave o autoperforanti



SOFTWARE DEDICATO

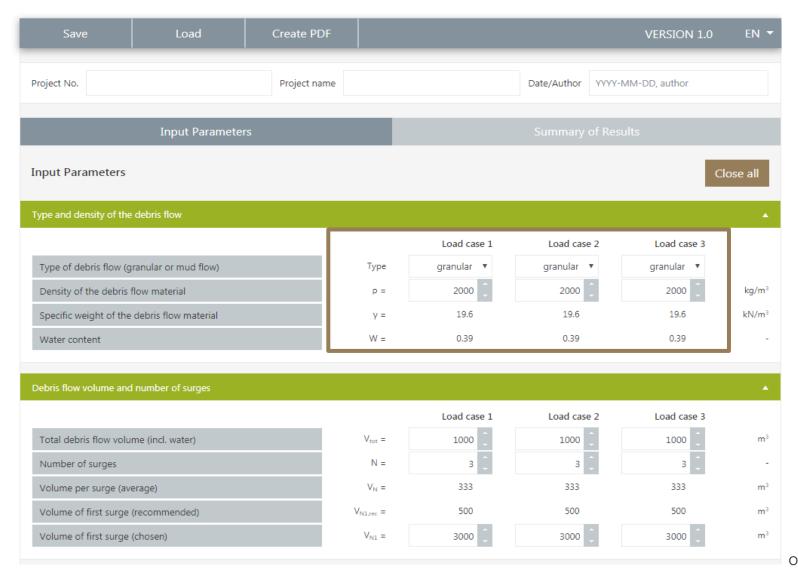
SOFTWARE DEDICATO


Salety is our mature

SOFTWARE DEDICATO

DEBFLOW ONLINE TOOL

Dimensioning of the flexible Debris Flow Protection System GEOBRUGG VX/UX - DEBFLOW


Save	Load	Create PE)F			VERSION 1.0	EN ▼		
Project No. Project name				Date/Author YYYY-MM-DD, author					
	Input Paramete	rs		Summary of Results					
Input Parameters Clo							Close all		
Type and density of the	e debris flow								
				Load case 1	Load case 2	Load case 3			
Type of debris flow (g	granular or mud flow)		Туре	granular ▼	granular ▼	granular ▼			
Density of the debris	flow material		ρ=	2000 🗇	2000 🗊	2000 📮	kg/m³		
Specific weight of the	e debris flow material		γ =	19.6	19.6	19.6	kN/m³		
Water content			W =	0.39	0.39	0.39	-		
Debris flow volume and	d number of surges								
				Load case 1	Load case 2	Load case 3			
Total debris flow volu	ıme (incl. water)		$V_{\rm tot} =$	1000 _	1000 🗇	1000 🗍	m^3		
Number of surges			N =	3 💂	3 🗘	3 🗼	-		
Volume per surge (average)		V _N =	333	333	333	m^3			
Volume of first surge (recommended)		V _{N1,rec} =	500	500	500	m^3			
Volume of first surge (chosen)		V _{N1} =	3000 🗍	3000 🗇	3000 🗇	m^3			
Peak discharge							*		
				Load case 1	Load case 2	Load case 3			

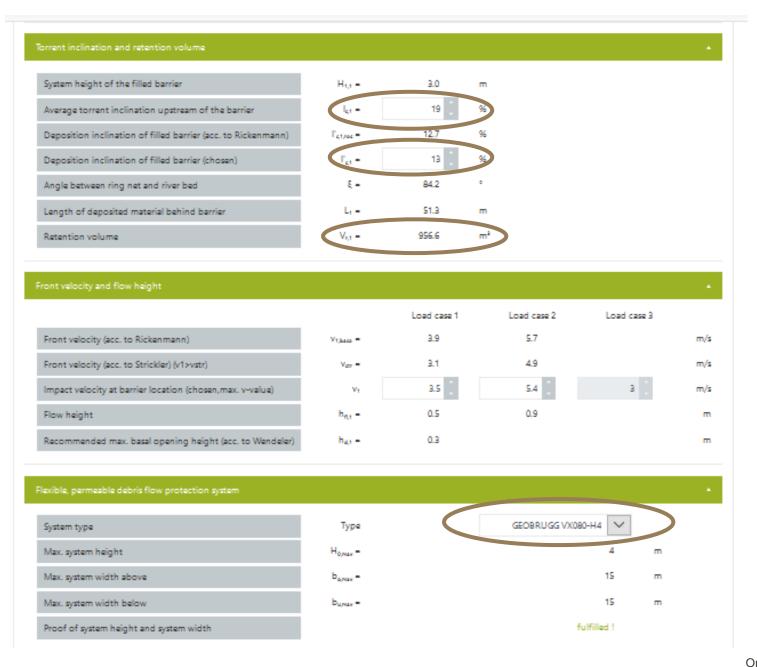
DEBFLOW ONLINE TOOL

Dimensioning of the flexible Debris Flow Protection System GEOBRUGG VX/UX - DEBFLOW

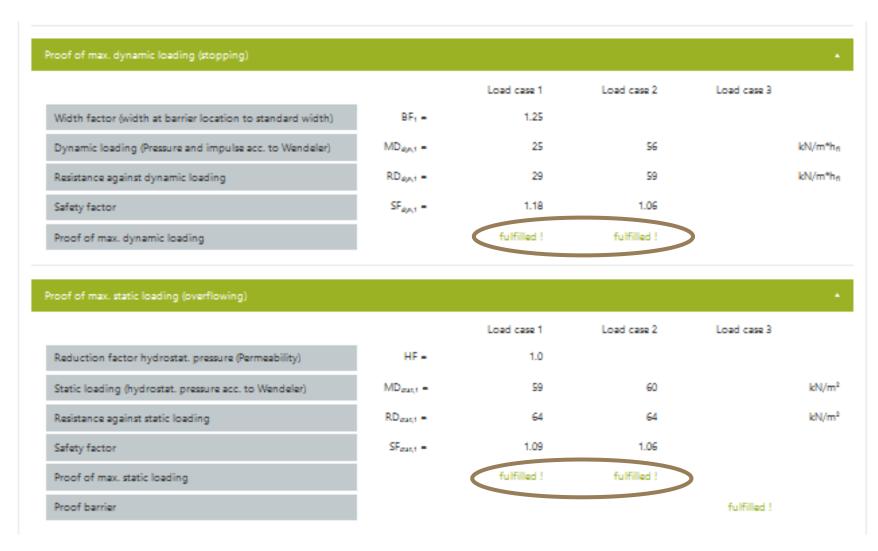
DEBFLOW ONLINE TOOL

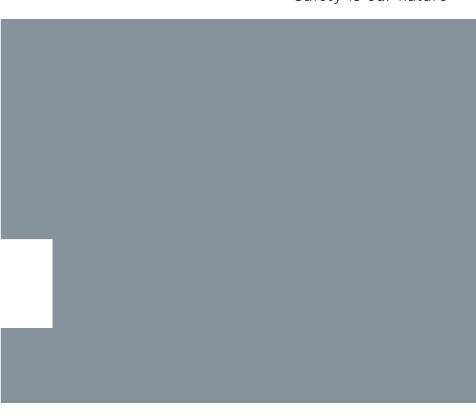
Dimensioning of the flexible Debris Flow Protection System GEOBRUGG VX/UX - DEBFLOW

Save	Load	Create PDI	=			VERSION 1.	0 EN ▼			
Project No. Project name			ne		Date/Author	YYYY-MM-DD, author				
	Input Paramete	rs		Summary of Results						
Input Parameters							Close all			
Type and density of the	e debris flow									
				Load case 1	Load case	e 2 Load case 3				
Type of debris flow (g	granular or mud flow)		Туре	granular ▼	granular	▼ granular ▼				
Density of the debris	flow material		ρ =	2000 📮	2000	2000	kg/m³			
Specific weight of the	debris flow material		γ =	19.6	19.6	19.6	kN/m³			
Water content			W =	0.39	0.39	0.39	-			
Debris flow volume and	I number of surges		_							
			1	Load case 1	Load case	e 2 Load case 3				
Total debris flow volu	me (incl. water)		V _{tot} =	1000 📜	1000	1000	m ³			
Number of surges			N =	3 💂	3	3 🗇	-			
Volume per surge (av	erage)		V _N =	333	333	333	m ³			
Volume of first surge	(recommended)		V _{N1,rec} =	500	500	500	m ³			
Volume of first surge	(chosen)		V _{N1} =	3000 📜	3000	3000	m ³			


Debris flow volume and number of surges Load case 1 Load case 2 Load case 3 900 900 900 m^3 Total debris flow volume (incl. water) $V_{tot} =$ 3 3 N = Number of surges 300 m³ Volume per surge (average) V_N = 300 m³ Volume of first surge (recommended) V_{N1,rec} = 450 450 m³ 450 450 3000 Volume of first surge (chosen) V_{N1} = Peak discharge Load case 2 Load case 3 Load case 1 15.8 15.8 m³/s Peak discharge (acc. to Rickenmann) $Q_{P,rec} =$ 16 50 50 m³/s Peak discharge (chosen) $Q_p =$ Safety factor SF = Global safety factor

Save	Load	Create PDF				VERSI	ON 1.0 EN ▼		
Project No.		Project nam	e		Date/Autho	or YYYY-MM-DD, aut	hor		
Input Parameters					Summary of Results				
Summary of Result	25						Close all		
Summary of Results									
Multi-level debris flow	protection system	No.			Safety Factor	Proof	Retention volume		
GEOBRUGG VX080-H4		No. 1 Barrie	era1		1.06	fulfilled!	956.6 m²		
Retention volume									
Total retention volum	ne		V _{r,tot} =	957	m³				
Required retention v	rolume		V _{tot,max} =	900	m²				
Reserve			V _{r/ecomo} =	57	m²				
Proof of retention vo	olume			fulfilled!					
Proof of overall syste	ım			fulfilled	!				





Save	Load	Create PDi				VERSI	ON 1.0 EN ▼		
Project No.		Project nam	10		Date/Aut	hor YYYY-MM-DD, aut	hor		
Input Parameters				Summary of Results					
Summary of Results	5						Close all		
Summary of Results									
Multi-level debris flow p	protection system	No.			Safety Factor	Proof	Retention volume		
GEOBRUGG VX080-H4		No. 1 Barri	era1		1.06	fulfilled!	956.6 m²		
Retention volume									
Total retention volum	10		V _{r,ros} =	957	m³				
Required retention vo	olume		V _{tot,max} =	900	m²				
Reserve			V _{ryeconie} =	57	m²				
Proof of retention vo	lume			fulfilled!					
Proof of overall system	m				fulfille	d!			
Barrier Location No. 1									

BARRIERE IN OPERA

Villar Pellice (TO) Barriera UX-160

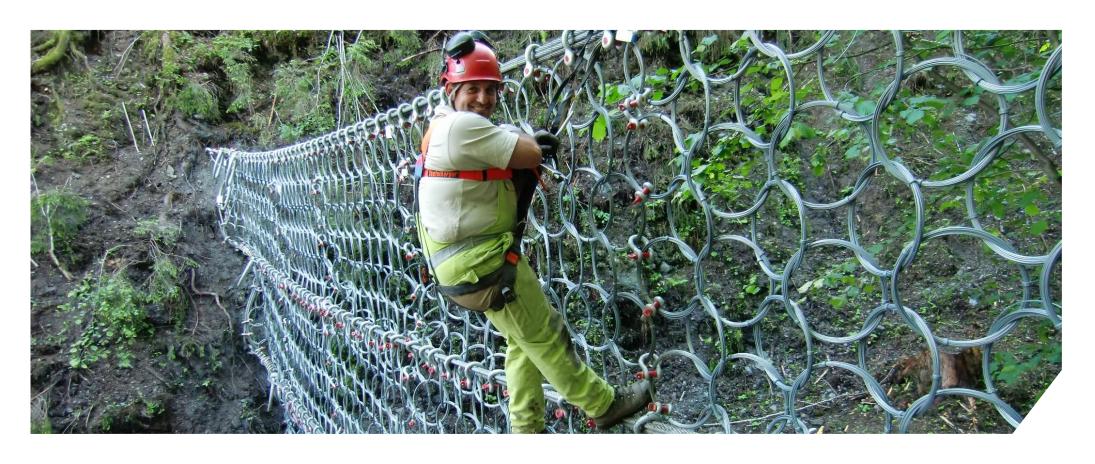
BARRIERE IN OPERA

Rittana (CN) Barriera VX-080

STRUTTURE SEMPLICI

Strutture semplici

Rapidità di posa


STRUTTURE SEMPLICI

Manutenzione

- Check-up
- Rimozione del materiale impattato contro la barriera
- Sostiutuzione parti danneggiate o non più utilizzabili (es. Freni)
- Nuova valutazione del rischio se l'impatto ha superato i parametri di progettazione

GRAZIE PER L'ATTENZIONE

Ordine Geologi Umbria